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Using a recently developed geometrical method, we study the transition from order to chaos in an important
class of Hamiltonian systems. We show agreement between this geometrical method and the surface of section
technique applied to detect chaotic behavior. We give, as a particular illustration, detailed results for an
important class of potentials obtained from the perturbation of an oscillator Hamiltonian by means of higher-
order polynomials.
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I. INTRODUCTION

The problem of detecting the transition from order to
chaos in Hamiltonian systems has become increasingly im-
portant in Hamiltonian chaos theory.

Many authors �1,2� have used geometrical methods to
analyze the stability of a given Hamiltonian by constructing
the manifold of solutions of the equations of motion; nega-
tive curvature corresponds to instability of the motion �3�,
and as seen by examining the deviation between nearby geo-
desic orbits that flow on the manifold, the motion is highly
sensitive to initial conditions. On the other hand, positive
curvature implies stability. The construction of an appropri-
ate manifold �defined by its metric and connection form� is a
crucial step to detect the stability of the motion.

One of the most important classes of Hamiltonians, as
studied later on, has potentials obtained from the perturba-
tion of an oscillator by higher-order polynomials �anharmo-
niticity�. Finding the transition from order to chaos in this
class of systems has been highly elusive �1�, and in some
methods, chaotic behavior cannot be directly seen.

We use a method �4� recently developed to analyze this
class of Hamiltonian systems in two dimensions in search of
the transition point from order to chaos. The criteria depend
on energy as well as parameters in the Hamiltonian. We
show absolute agreement between our method and the well-
known technique of surface of section �Poincaré plots�.

II. THEORY

Casetti et al. �1� and others �2� have discussed the appli-
cation of the Jacobi metric �5� �gij =�ij�E−V�� to formulate
criteria for the occurrence of instability in Hamiltonian sys-
tems. The Jacobi metric results in an invariant line interval
which corresponds to a parameter s corresponding to the
action rather than the time t. Transforming the variables in
the resulting geodesic equations to t, one finds the standard
Hamilton equations.

These authors have identified a class of Hamiltonians,
those which at small distances become dominated by oscil-
latorlike terms, for which the application of this method is
not a directly useful criterion in terms of a definite sign of
curvature of the manifold. They nevertheless find a useful

criterion in terms of the changes of curvature over space.
We have introduced an alternative formulation of the geo-

metrical picture �4� which is directly effective for a large,
rather unrestricted set of Hamiltonian systems, as well as for
Hamiltonians which are dominated by oscillatorlike poten-
tials at small distances. The method that we have developed
results in an embedding of the Hamiltonian motion in a sys-
tem of coordinates which are also subject to local coordinate
covariance, and the geodesic deviation equations provide a
very sensitive and effective criterion for stability.

In this system of general coordinates the Hamiltonian mo-
tion is described by the geodesic formula

ÿ� = − Mmn
� ẏmẏn, �1�

where

Mmn
� �

1

2
g�k�gnm

�yk . �2�

Here, the metric tensor is related by general coordinate trans-
formation to the conformal form

gij = �ij
E

E − V
, �3�

in the special coordinate system in which the Hamiltonian
takes on the form

H =
pi2

2M
+ V�y� . �4�

In these special coordinates the geodesic equation takes on
the form

ÿ� = −
�V

�y� . �5�

In general coordinates, however, the geodesic deviation com-
puted from �1� provides us with a condition for stability
which takes into account the curvature of the space of solu-
tions; one may then substitute into the formula for geodesic
deviation the special coordinate set and obtain a criterion
which is stronger than direct computation of the deviation of
orbits described by �5�—i.e., that if at least one of the eigen-
values of the matrix
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V�i = � 3

M2v2

�V

�x�

�V

�xi +
1

M

�2V

�x��xi� �6�

is negative, the motion will generally be unstable �this result
is not the same as for the computation of the deviation of the
orbits generated by �5�; it includes information from the cur-
vature of the manifold in which the Hamiltonian motion is
embedded�.

III. RESULTS AND DISCUSSION

In order to test our theory, we compare our results with
the computation regarding the surface of section for a family
of models obtained by perturbation of an oscillator Hamil-
tonian by means of higher-order polynomials.

One may easily verify that the unperturbed two-
dimensional oscillator potential is predicted to be stable.

We take for illustration here a simple and important case
of coupled harmonic oscillators with perturbation for which
the potential is given by

V�x,y� =
1

2
�x2 + y2� + 6x2y2. �7�

Figure 1 shows the surface of section for several energies.
Figures 1�a� and 1�b�, corresponding to E= 1

10 , 1
8 , show stable

orbits, while as the energy increases, as in Figs. 1�c�–1�f�,
corresponding to E= 1

7 , 1
6

1
5 ,1, the orbits have become more

and more unstable and show a chaotic signature.
The calculation using geometrical methods as shown in

Fig. 2 is parallel to Fig. 1. Figures 2�a� and 2�b�, correspond-
ing to E= 1

10 , 1
8 , show completely positive eigenvalues in the

physical region. In comparison, at higher energy, Figs.
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FIG. 1. a�, �b� A Poincaré plot
in the �y , py� plane for E= 1

8 , 1
10 ,

indicating regular motion. �c�, �d�,
�e� Poincaré plot in the �y , py�
plane for E= 1

7 , 1
6 , 1

5 , indicating
chaotic behavior. �f� A Poincaré
plot in the �y , py� plane for E=1,
indicating a strongly chaotic
behavior.

(b)(a) (c)

(d) (f)(e)

FIG. 2. The dark area shows the region of negative eigenvalues for the matrix V. The light area corresponds to positive eigenvalues where
the boundaries are the limits of the physical region. �a�, �b� correspond to E= 1

8 , 1
10 . The region of negative eigenvalues does not penetrate the

physically accessible region in this case. �c� corresponds to E= 1
7 . The dark areas appear on the boundary of the physically accessible region.

�d�, �e� correspond to E= 1
6 , 1

5 . The dark areas correspond to the existence of at least one negative eigenvalue in the physical region. �f� The
dark area of negative eigenvalues for the matrix V is seen to penetrate deeply into the light region of physically allowable motions for E
=1.
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2�c�–2�e�, corresponding to E= 1
7 , 1

6 , 1
5 , show regions of nega-

tive eigenvalues appearing at the boundary of the physical
area. These regions increase as the energy increases, and in
Fig. 2�f�, at E=1, the unstable region becomes significant.
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FIG. 3. �a� A Poincaré plot in the �y , py� plane for E= 1
5 , indi-

cating regular motion. �b�, �c�, �d� Poincaré plot in the �y , py� plane
for E= 1

2 , 3
2 ,5, indicating chaotic behavior.
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FIG. 4. The dark area shows the region of negative eigenvalues
for the matrix V. The lighter area corresponds to positive eigenval-
ues where the boundaries are the limits of the physical region. �a�
corresponds to E= 1

5 . The region of negative eigenvalues will not
penetrate the physically accessible region in this case. �b�, �c� cor-
respond to E= 1

2 , 3
2 . The dark areas correspond to the existence of at

least one negative eigenvalue in the physical region. �d� The dark
area of negative eigenvalues for the matrix V is seen to penetrate
deeply into the lighter region of physically allowable motion for
E=5.
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FIG. 5. The dark area shows the region of negative eigenvalues
for the matrix V. The lighter area corresponds to positive eigenval-
ues where the boundaries are the limits of the physical region. �a�
corresponds to �=4. The region of negative eigenvalues does not
penetrate the physically accessible region in this case. �b� corre-
sponds to �c=6. The dark areas appears in the physically accessible
region. �c�, �d� correspond to �=8,12. The dark areas correspond to
the existence of at least one negative eigenvalue in the physical
region.
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FIG. 6. The dark area shows the region of negative eigenvalues
for the matrix V. The lighter area corresponds to positive eigenval-
ues where the boundaries are the limits of the physical region. �a�
corresponds to �= 1

10. The region of negative eigenvalues does not
penetrate the physically accessible region in this case. �b�, �c�, �d�
correspond to �=− 1

10 ,−1 ,−2. The dark areas correspond to the ex-
istence of at least one negative eigenvalue in the physical region.
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Both show Ec� 1
7 as the critical energy of transition.

In addition, we examine our method for a generalization
of the Toda potential

V�x,y� =
1

2
�x2 + y2� + x2y −

1

3
y3 +

3

2
x4 +

1

2
y4. �8�

For sufficiently low energy this system shows stabilization,
while in the case of higher energies the system becomes less
stable and a chaotic signature appears. Figure 3 shows the
surface of section for several energies. We can easily see that
for E= 1

5 , Fig. 3�a� shows stable orbits; on the other hand, at
higher energies E= 1

2 , 3
2 ,5, Figs. 3�b�–3�d� show clearly un-

stable regions corresponding to chaotic motion.
In comparison we examine our criterion, Eq. �6�, for this

potential and find the eigenvalues as a function of space
�x ,y�. Figure 4 shows the result in comparison to Fig. 3. We
can see that for E= 1

5 , Fig. 4�a� shows two positive eigenval-
ues in the physical area, while for energies E= 1

2 , 3
2 ,5, Figs.

4�b�–4�d� show that there are �one or two� negative eigen-
values in the physical area and hence chaotic motion. Both
show Ec� 1

5 as the critical energy of transition.
The transition from order to chaos could depend on a

parameter in the potential. The next two examples show how
this transition appears in our method. We study the behavior
of an important class of quartic oscillators. The first example
was treated by a different method by Oloumi and Teychenne
�6�. Figure 5 shows the eigenvalues corresponding to

V�x,y� =
1

2
�x4 + y4� +

�

2
x2y2. �9�

This system, for E=1, shows chaotic behavior for ��6 �6�.
The transitions shown in Fig. 5�a� correspond to �=4 below
the transition, Fig. 5�b� shows the transition at �c=4, and
Figs. 5�c� and 5�d�, corresponding to �=8,12, are above the
transition.

Similar behavior can be found for another Hamiltonian of
the quartic oscillator:

V�x,y� = 3x4 + y4 − �x2y2. �10�

In this case, the system shows instability for ��0. Figure 6
shows the calculation of the eigenvalues corresponding to
different values of �. It clearly shows negative eigenvalues
in physical regions above the transition.

IV. CONCLUSION

One can see that in these cases the analytic condition, Eq.
�6�, gives results in agreement with the numerical technique
of surface of section. This condition is exact, sensitive, and
easy to apply. In case of two-dimensional Hamiltonian sys-
tems, one must only compute eigenvalues of 2�2 symmetric
matrices.

The technique of surface of section is also applicable in
three dimensions �7�, but it is difficult to apply as a criterion
for unstable dynamics in this particular case �8�. For such
cases one may use the well-known Lyapunov characteristic
exponents. BenZion and Horwitz �9� have shown that the
geometrical method discussed here used as a much simpler
and more efficient criterion for instability.
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